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1  INTRODUCTION 
 
 

System dynamics is a multi-domain[3] discipline 
requiring the system engineer to understand different 
engineering domains and their behavior to inputs and 
corresponding response behavior. For a control system 
engineer, controller synthesis begins with a proper 
system model. 

 

Where a proper system model means the system dynamics 
has been captured with as little simplifying assumptions 
made during the modeling process. 
 
This paper assumes the modeling has been done to a high 
degree of accuracy, by utilizing the bond Graph [2][3] 
method and therefore proceeds to carry out controller 
synthesis from designing system transfer functions, 
carrying out open loop tests and then designing a feedback 
loop for the system in closed loop[1] with the controller in 
the loop. Fine tuning of the controller is also performed to 
show the different responses obtainable and how the 
various gains affect overall system response. 
 
 
This work follows from dynamic modeling techniques 
which the author made wide us of during his M.Sc in re- 
search, specializing in Automatic Control at the French 

Grande Ecole, INSA de Lyon with specific theoretical 
input coming from course work delivered by Bideaux 
Eric[4]. 
 
 
 
2  SYSTEM MODEL 
 
 
The system model is divided into two active parts. This is 
because the sun tracker contains two actuators for control 
in elevation and in Azimuth. The elevation model is first 
presented here, then the azimuth model. 
 
 
 
 
2.1 Elevation model 
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Figure 1: Elevation equivalent circuit 

 
 
The Elevation model obtained from the system prototype 
shown in figure 1 above, yields the following set of first 
order ODE’s shown below: 
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And in equivalent state space representation x = Ax+Bu we 
have : 
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Where k1, k2 are constants grouping some parameters 
defined by:  
 
This model takes for its input v1 and gives a response 
which is equivalent to the shaft velocity Vsh. After 
transforming the first order ODE’s, the resulting transfer 
function of the elevation system which links these two 
variables evaluates to: 

�𝑠 +
𝑘3𝑘4𝐿1
𝑠𝐿1 + 𝑅1

+ 𝑘2� 𝑉𝑠ℎ(𝑠) = k4
L1  

sL1 + R1
V1(s) + N(s) 

 
 
 
Where N(s) is a disturbance term which is due to the mass 
hanging down while the panel load is at a maximum 
incline to the vertical. K3=r/(n1n2Mtot) and k4 = 
r/(n1n2k1L1).  

 
With the disturbance term, N(s) set to zero, the final input-
output transfer function of the system after substitution is: 
 

𝐺el(𝑠) =
Vsh(s)
V1(s) =

5.126s + 5.126
s3 + 2.089s2 + 1.528s + 0.439

 

 
2.2 Azimuth model 
 
The Azimuth model obtained from the system prototype 
shown in figure 2 below yields the set of first order ODE’s 
shown below: 

 
Figure 2: Azimuth equivalent circuit 
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With equivalent state space representation given as: 
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The azimuth model takes v2 as its input and the response is 
observed on the platform’s angular velocity Wpl. After 
making necessary substitutions for the overall Azimuth 
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transfer function, the following form is obtained for the 
system transfer function in open loop: 
 

𝐺az(𝑠) =
Wpl(s)
V2(s)  

 
Relating the output platform angular velocity to the input 
supply voltage, the transfer function for the azimuth 
dynamics is obtained but not shown here for lack of space 
 
 
 
It must be noted that, this coarse form of the azimuth 
transfer function made little or no simplifications to the  
 
 
Azimuth model obtained from the system dynamic studies. 
The parameters specified in this equation are: 
 
K1= r2/j2, k2=Frr/Jr2, k3= Frr/Jpl with electric time constant 
τ2=L2/R2    
 
As a first approximation before system identification, all 
the constants are set to unity for open loop test and 
analysis. This generates a system transfer function which is 
strictly proper( having the degree of the transfer function 
characteristic polynomial’s denominator greater than 
degree of numerator) 
 

𝐺az(𝑠) =
s3 + 3s2 + 2s

s6 + 4s5 + 9s4 + 16s3 + 19s2 + 12s + 3
 

 
 
3 MODELING AND SYSTEM IDENTIFICATION 
 
The system identification for the elevation dynamic follows 
from the method of Ziegler-Nichols and Broida[1]. From 
the response curve seen in figure 3, the system is 
approximately a first order system. Using Broida 
parameters, the system response time (T) and time constant 
is calculated following the formulas given below: 
 
 

𝑇 = 2.8 ∗ 𝑡1 − 1.8 ∗ 𝑡2 
 

𝜏 = 5.5 ∗ (𝑡2 − 𝑡1) 
 
 
Open loop analysis was carried out on both elevation and 
azimuth models obtained previously in the analog or 
continuous domain. We then proceed to identify the system 
parameters which have utility in synthesizing a suitable 
controller for each subsystem taking into consideration the 
system dynamics involved. 

 
 
 
 
 
3.1 Elevation dynamic parameters 
 
A resume of the identified elevation dynamic parameters is 
given below in Table 1: 
 
Table 1: Open loop Elevation identification parameters 

Parameters Ziegler-Nichols Broida 
τ 0.0 2.365 

response time (T) 0.0 1.741 
 
 
 
 
 
Employing Ziegler-Nichols method, where t1 is time at 28% 
of max. response and t2 is time at 40% of max. response. 
The open loop response gives a Time delay of about 0.1 
seconds. The time constant(63% of output response) for the 
system in open loop is 3.89sec. 
 
A Matlab/simulink model for the elevation dynamics was 
used to obtain the open loop response shown in figure 3 the 
closed loop response of the system is obtained from the 
signal block diagram given by figure 4, with the response 
for the closed loop system shown in figure 7 below: 
 
 
 
 

 
Figure 3: elevation open loop response 
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Figure 4: closed loop elevation diagram showing feedback 

 
 
 
 
3.2 Azimuth dynamic parameters  
 
 
 
Similarly, for the azimuth dynamics we obtain the open 
loop response shown in figure 5 as obtained from 
simulation experiments in open loop, while the resume of  
 
 
the identified azimuth parameters is given in Table 2 
below: 
 

 
Figure 5: Open loop Azimuth response 

 

 

 
Table 2: Open loop Azimuth identification parameters 

Parameters Ziegler-Nichols Broida 

τ 0.0 1.7626 
response time (T) 0.0 1.1165 

 
 
 
 
4 MODELING AND CONTROLLER SYNTHESIS 
 
Since the elevation response follows a first order system 
response curve, a PI controller is chosen with gains tuned 
following the Chiens-Hrones-Reswick formulas in tracking 
mode [1]. 
 
From the open loop analysis, the elevation controller 
synthesis follows 
Kp=0.35x T/τ = 0.257 &  
Ti=1.2xT=2.089 
 
 
from where the closed loop control response is shown 
below: 

 
Figure 6: Closed loop elevation response 

 
 
The azimuth controller synthesis follows 
Kp=0.35x T/τ =0.222 & 
Ti=1.2xT=1.3398 
 
 
4.1 Closed loop system 
 
After controller synthesis, the controller is incorporated 
into the system with the resulting system diagram shown in 
figure 6 below: 
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Figure 7: Azimuth closed loop block schematic 

 
 
 
 
4.2 Stability analysis 
 
Various methods exist to test the stability of dynamic 
systems such as that describing the elevation model of the 
sun tracker. Some widely used methods are: 
 

• Routh- Hurwitz criterion 
• Eigenvalue analysis 
• Lyapunov method and LaSalle's invariance 

principle 
• Small or short time stability analysis 

 
 
 
 
 
 
4.3 Stability determination using Eigenvalue  
 analysis 
 
To perform stability analysis on the elevation system, the 
closed loop response will have to be made use of. Recalling  
 
the form of the transfer function in open loop for the 
elevation subsystem given by equation 3; we can  
 
 
Incorporate the behavior of the PID controller recalling that 
the new input from the PID controller is given by: 
 

𝑈(𝑠) = 𝐾𝑝�1 +
𝐾𝑖
𝑠

+ 𝑠𝐾𝑑�𝐸(𝑠) 

 
with U(s) substituting Vin in equation 3 and the error term 
from feedback action E(s) being replaced by Vd(s)-Vsh(s), 
we will have a new closed loop transfer function given by: 
 

𝐺elcl(𝑠) =
Vsh(s)
Vd(s) =

s2K1∗ + sK2∗ + K3∗

s3K4∗ + s2K5∗ + sK6 + K7∗
 

 
 
With the constants defined as: 
 
K1*=k4kpkdL1 
K2*=k4kpL1 
K3*=k4kpkiL1 
K4*=L1 
K5*=R1+k2L1+k4kpkdL1 
K6*=k2R1+k3k4L1+k4kpL1 
K7*=k4kpkiL1 
 
Stability of the system can be inferred from the poles of the 
TF denominator. Since all the eigenvalues will be real and 
strictly negative, the system is eigenvalue stable as all its 
characteristic poles will be found on the left half of the 
complex plane. 
 
 
 
 
4.4  Stability analysis using Exponential time growth 
 
The stability analysis looks at the dynamics of the system in 
exponential time. If the error of the system decays to zero as 
time goes to infinity then the system is said to be stable. 
This is seen from the plot given in figure 7 of the closed 
loop dynamic controller response of the elevation system 
studied. 
 
 
 
5 EXPERIMENTAL RESULTS AND ANALYSIS 
 
Experiments were carried out in simulation and the results 
are shown here with utilized parameters. The system is 
controllable using a simple PID controller with gain tuning  
 
as shown in figure 6 with various tuned values for 
controller gains. From the open loop response of the 
elevation system, we see that divergence from the nominal 
step input occurs. The voltage equivalent for this response 
means a sharp rise in input voltage to the elevation motor 
which is not supposed to be. The controller addresses this 
situation by forcing the output to be within the desired 
response of 12 volt. 
 
 
The azimuth open loop response shows a wide divergence 
in the motor behavior. This is seen through the strong 
oscillatory response observed. Using a simple PID might 
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not be ideal for the control of this system and ongoing tests 
are in place to resolve the issue of the azimuth control. 
 
6 DISCUSSION AND CONCLUSION 
 
The modeling, analysis and control of the sun tracker 
system are looked at from a control system stand point with 
some results of the performed experiments given. Gain 
tuning is employed to adjust the system response to within 
the desired values. 
 
While standard methods[1] exist and are used to compute 
the start gain parameters for the controller, it is seen that 
working gain values could widely diverge from the 
calculated or nominal as was the case with this work. This 
is being attributed to the unknown system dynamics 
ignored as part of this analysis as the parts used were 
sourced for locally in the market without a thorough 
knowledge of the internal components especially as it 
concerns frictional effects, reduction gear ratios and other 
unaccounted for parameters which could play a role in this 
divergence. 
 
In  summarizing, the goal of building a system model and 
carrying out analysis needed for controller synthesis was 
achieved through this paper with the dissemination of such 
knowledge to interested scientists and engineers. 
 
Further work will be to carry out detailed numerical 
simulations to gain further insight into the system behavior. 
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